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Abstract—With the advance of medical imaging 
technologies, multimodal images such as magnetic 
resonance images (MRI) and positron emission 
tomography (PET) can capture subtle structural and 
functional changes of brain, facilitating the diagnosis of 
brain diseases such as Alzheimer’s disease (AD). In 
practice, multimodal images may be incomplete since PET 
is often missing due to high financial costs or availability. 
Most of the existing methods simply excluded subjects 
with missing data, which unfortunately reduced the sample 
size. In addition, how to extract and combine multimodal 
features is still challenging. To address these problems, we 
propose a deep learning framework to integrate a 
task-induced pyramid and attention generative adversarial 
network (TPA-GAN) with a pathwise transfer dense 
convolution network (PT-DCN) for imputation and 
classification of multimodal brain images. First, we 
propose a TPA-GAN to integrate pyramid convolution and 
attention module as well as disease classification task into 
GAN for generating the missing PET data with their MRI. 
Then, with the imputed multimodal images, we build a 
dense convolution network with pathwise transfer blocks 
to gradually learn and combine multimodal features for 
final disease classification. Experiments are performed on 
ADNI-1/2 datasets to evaluate our method, achieving 
superior performance in image imputation and brain 
disease diagnosis compared to state-of-the-art methods. 

 
Index Terms—Multimodal brain images, Generative 

adversarial network, Dense convolution network, Image 
classification, Alzheimer’s disease.  
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I. INTRODUCTION 

the advance of neuroimaging technologies, 

different imaging modalities such as magnetic 

resonance imaging (MRI) and positron emission tomography 

(PET) have been used to capture structural and functional 

information of human brain. Multimodal images can provide 

powerful and complementary information for more accurate 

and earlier diagnosis of brain diseases such as Alzheimer’s 

disease (AD) and mild cognitive impairment (MCI) [1]. AD is a 

progressive and irreversible neurodegenerative dementia, 

characterized by memory loss and cognitive impairment [2]. 

MCI is the prodromal stage of AD and can be divided into 

stable MCI (sMCI) and progressive MCI (pMCI). Currently, no 

effective treatment has been found to cure AD and existing 

medicines can merely alleviate symptoms and slow down its 

progression [3]. Thus, its early diagnosis is important for 

intervention. Benefitting from rich information in multimodal 

images, machine learning methods have been investigated to 

combine MRI and PET for early diagnosis of AD [4].   

There are several categories of methods for machine learning 

based disease diagnosis. One category of methods investigated 

machine learning technologies on handcrafted features for 

disease diagnosis. Zhang et al. [5] proposed a multi-kernel 

support vector machine to integrate multimodal features 

including tissue volumes of 93 regions of interest (ROIs) in 

MRI scans, intensity values of PET and CSF biomarkers for 

disease classification. Instead of using multi-kernel learning, 

Gray et al. [6] proposed a random forest model based on a 

similarity measurement framework for multimodal brain 

disease classification. Young et al. [7] introduced a Gaussian 

process classifier for multimodal probabilistic prediction of 

MCI conversion to AD within 3 years. A manifold regularized 

multi-task feature learning method was proposed to combine 

the multimodal features for disease classification, which can 

preserve both intrinsic relatedness and distribution among 

multimodal data [8]. Tong et al. [9] proposed a nonlinear graph 

fusion network to combine multimodal features for the 

classification of AD. Shi et al. [10] proposed to use the 

feature-level coupled interaction of multimodal data for the 

diagnosis of AD and MCI. 

Recently, deep learning networks were investigated to 

extract latent features from ROIs on different image modalities 

for AD classification. Liu et al. [11] extracted a set of latent 

features from 83 ROIs on MRI and PET scans, and utilized a 
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zero-masking strategy to combine complementary information 

of multimodal data for AD diagnosis. Suk et al. [12] used a 

stacked autoencoder to learn latent high-level features from 

multimodal ROIs, followed by a multi-kernel support vector 

machine to combine these features for AD classification. Lei et 

al. [13] introduced a discriminative sparse learning method 

with relational regularization to jointly predict the clinical score 

and judge disease stages using multimodal data. Liu et al. [14] 

designed a view-aligned hypergraph learning network to 

explicitly model the coherence among multimodal data. 

Instead of building deep learning networks on handcrafted 

features, some methods build deep networks directly on 

multimodal brain images to learn features for disease diagnosis. 

A deep neural network with a restricted Boltzmann machine 

was proposed to learn the hierarchical feature representation of 

3D image patches for multimodal AD/MCI diagnosis [15]. A 

cascaded convolutional neural network was proposed to jointly 

learn the multi-level and multimodal features of MRI and PET 

for AD classification [16].  

The abovementioned methods could make full use of 

complementary information of multimodal data. However, it is 

still challenging to deal with incomplete multimodal data. In 

practice, patient movement, insufficient image quality, 

financial consideration or facility availability could result into 

incompleted multimodal data. To address this problem, Yuan et 

al. [17] proposed a multi-source feature learning method by 

jointly analyzing the incomplete multiple heterogeneous 

neuroimaging data for disease classification. Recently, a latent 

representation learning method was proposed to utilize 

inter-modality association for AD diagnosis [18]. To utilize 

incomplete data, another intuitive strategy is to directly 

generate the missing data with another available modality data. 

Li et al. [19] proposed a deep learning framework through the 

estimation of missing PET from MRI for multimodal disease 

diagnosis. Recently, the generative adversarial networks were 

also investigated to impute missing modality data by 

combining feature consistency and voxel-wise consistency for 

multimodal data imputation [20][21][22].  

Although many efforts have been made to generate the 

missing data, it is still challenging to accurately generate the 

key information to identify abnormalities of diseases. In this 

paper, we propose a hybrid deep learning framework that 

contains a task-induced pyramid and attention generative 

adversarial network (TPA-GAN) and a pathwise transfer dense 

convolution network (PT-DCN) for multimodal image 

imputation and classification, respectively. The TPA-GAN is 

proposed to integrate the pyramid convolution and attention 

module as well as a task-induced network into GAN to generate 

the missing PET with their corresponding MRI. With the 

imputed multimodal images, a dense convolution network with 

pathwise transfer blocks is further built to gradually learn and 

combine multimodal features for final disease classification. 

Experiments are performed on ADNI dataset to test the efficacy 

of the proposed method on AD diagnosis and MCI conversion 

prognosis.  

The rest of this paper is organized as follows. In Section II, 

we introduce the dataset used in this study and the image 

pre-processing procedures. In Section III, we present the 

proposed method in detail. The experimental results are 

provided in Section IV. In Section V, we discuss the advantages 

and limitations of the proposed method. A conclusion is given 

in Section VI.  

II. MATERIALS 

A. Dataset 

In this work, the multimodal brain images are from the 

public database of Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) [23]. For the ADNI study, thousands of 

participants were recruited across North America to collect the 

brain images and clinical assessments. The study was approved 

by the Institutional Review Board (IRB) of participating 

institutes. The initial five-year study of ADNI-1 was further 

extended to ADNI-2 in 2009. In this study, we use the 

T1-weighted MRI and FDG-PET from ADNI-1 and ADNI-2 

datasets to train and evaluate our method. Table I shows the 

demographic and clinic information of the studied subjects 

from ADNI. In ADNI-1, MRI data are obtained with 1.5T 

scanners from the baseline visits of 821 subjects including 196 

AD, 168 pMCI, 230 sMCI and 227 CN, while PET data are 

available in 396 of these subjects. In ADNI-2, MRI data are 

obtained with 3T scanners from the baseline visits of 156 AD, 

66 pMCI, 112 sMCI and 200 CN subjects, while PET data are 

available in 487 of these subjects. More details about the 

protocol of data acquisition could refer to the official website. 

B. Image pre-processing 

All MRI and PET images in this study are pre-processed by 

FMRIB Software Library (FSL) 6.0.3, which is available at the 

website https://fsl.fmrib.ox.ac.uk/. First, BET algorithm is used 

for brain extraction [24]. As the result, the skull is stripped from 

the source image space. Next, the MRI images are aligned to 

Montreal Neurological Institute T1 standard template space 

(MNI152_T1_1mm) with the FLIRT linear registration 

algorithm [25], instead of nonlinear registration[26][27][28], it 

can save computational time during the application stage. The 

PET images are aligned to their corresponding T1 images of the 

specific subjects and brought to MNI space. After linear 

registration, the MRI and PET images are cropped to the size of 

TABLE I 
DEMOGRAPHIC AND CLINICAL INFORMATION OF THE STUDIED SUBJECTS. 

Dataset 
Cate-

gory 

Gender 

(F/M) 

Age 

(Years) 
CDR MMSE 

ADNI1 

AD 97/99 75 7 7.7.   0 8 0 3. .  23 3 2 0. .   

pMCI 66/102 74 8 6 9. .  0 5 0 0. .  26 6 1 7. .   

sMCI 77/153 75 0 7 7. .  0 5 0 0. .  27 3 1 8. .   

CN 110/117 75 9 5 0. .  0 0 0 0. .  29 1 1 0. .   

ADNI2 

AD 66/90 75 7 7.9.   0 9 0 4. .  21 8 3 8. .  

pMCI 31/35 72 9 7 3. .  0 6 0 2. .  25 7 2 2. .  

sMCI 50/62 72 6 7 9. .  0 5 0 1. .  27 7 2 2. .  

CN 106/94 74 1 6 3. .  0 0 0 1. .  28 9 1 3. .  

Abbreviations: AD: Alzheimer’s disease; pMCI: progressive mild 
cognitive impairment; sMCI: stable mild cognitive impairment; CN: 
cognitive normal; M: male; F: female; CDR: Clinical Dementia Rating; 
MMSE: Mini-Mental State Examination. 
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152 188 152 by removing the voxels of zero values in the 

periphery of brain. To further reduce the computational 

complexity, all MRI and PET images are downsampled to the 

size of 76 94 76 for the input of our proposed models. 

III. METHODS 

A. Overview of the Proposed Method 

Given the preprocessed MRI and PET brain images, there are 

two main difficulties for mulitmodal classification of AD or 

MCI, i.e., the missing PET data and the multimodal fusion.  In 

this work, we propose a deep learning framework consisting of 

two deep networks: TPA-GAN for imputation of missing PET 

images and PT-DCN for mulitmodal classification, as shown in 

Fig. 1. The details are presented in the following subsections.  

 

 

B. Task-induced Pyramid and Attention Generative 
Adversarial Network (TPA-GAN) for Image Imputation 

To address the problem of modality incompleteness, the 

generative adversarial network (GAN) is investigated to 

generate the missing PET with the MRI based on their 

correlations. GAN consists of generator and discriminator. The 

generator aims to impute the missing data as close as possible to 

the real data, while the discriminator aims to learn features for 

distinguishing the imputed image from its real image. The 

training process stops when the discriminator could no longer 

recognize that the imputed image is fake.  

However, there are some limitations in this method. First, a 

chain of convolution layers with the same kernel size and 

pooling layers are used in generator, which may be difficult to 

capture different levels of details from source images. Second, 

although the discriminator of general GAN can regularize 

image distribution and visual quality, it does not preserve the 

important features related to the task of disease classification. 

Third, the general GAN does not consider long-range structural 

correlations, resulting in the blurring of generated images. To 

address above problems, we propose a TPA-GAN for 

imputation of missing PET. Fig. 2 shows the network 

architecture of our TPA-GAN, which consists of three 

subnetworks: pyramid and attention generator, standard 

discriminator, and task-induced discriminator. 

1) Pyramid and Attention generator: In this work, we build a 

generator of TPA-GAN based on the U-net structure which 

contains contracting and expanding parts, as shown in Fig. 2. 

The contracting part consists of a series of convolution layers 

followed by a rectified linear unit (ReLU) and a 2×2×2 max 

pooling operation with stride as 2 for feature down-sampling. It 

aims to learn the features from MRI for image imputation. A 

typical CNN usually uses a chain of convolution layers with 

small kernel size and pooling layers, to gradually reduce the 

size of the input and increase the receptive field. Different from 

that, we apply two pyramid convolution blocks in the 

contracting part to capture different levels of details from MRI. 

To process the input image at multiple scales, the first pyramid 

convolution block contains three different kernel sizes, i.e., 3×

3×3, 5×5×5 and 7×7×7. The second pyramid convolution 

block contains two different kernel sizes, i.e., 3×3×3 and 5×5

×5. The following convolution kernels are set to 3×3×3. The 

pyramid convolution block can not only enlarge the receptive 

field, but also capture different levels of image details.  

The expanding part of generator is to generate 

high-resolution image details with the lower-resolution feature 

maps. It contains three up-convolutional blocks, each 

consisting of an up-sampling layer followed by two 3×3×3 

convolutions with ReLU activation. A self-attention 

mechanism was introduced into the GAN to help model 

long-range and multi-level dependencies across image regions 

[29]. To consider long-range structural correlations, we apply 

the self-attention module to the last up-convolutional block. In 

generator, the convolution layers can process the information in 

local neighborhood while the self-attention module can model 

long-range correlations, which help generate better image 

details. 

Let 
C N

x R


  be the image feature learned from the 

previous latent layers, where C  is the number of channels and 

N  is the number of feature locations. To calculate the attention, 

according to the network, the feature is transformed into a 

feature space f as ( ) f
f x W x= . The receptive extent of the 

model when generating the   region can be calculated as: 
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where
f

W , W
  and 

v
W  are the matrices of weights leaned 

from the task of image imputation.  

Assume 
i

M
  and

i

P
  be MRI and PET for the 

th
i  subject, 

respectively. Since the missing data are always PET images, the 

generator G  is single-oriented and the loss function is 

formulated as: 

 ( ) ( )( )( )1
MRI

i

G x P x std M
L E log D G = −    (3) 

where std
D  denotes the standard discriminator. 

2) Standard discriminator: The standard discriminator plays an 

important role in discriminating that the generated data is real 

 
Fig. 1.  Overview of our proposed deep learning framework with a 
task-induced pyramid and attention GAN (TPA-GAN) and a pathwise 
transfer dense convolution network (PT-DCN) for multimodal brain 
image imputation and classification, respectively. 
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or not. It consists of 6 convolution layers with the increasing 

channels of 32, 64, 128, 256, 512 [20][21]. The 3  3  3 

convolution with stride as 2 is used for pooling. Lastly, the loss 

function of standard discriminator is defined as:   

            ( ) ( )( )1  
PETstd

i

x P x std PD
L E log D 


= − +                                       

( ) ( )( )( )
MRI

i

x P x std M
E log D G 


                        (4) 

the loss function optimizes that the output of 
std

D  with
i

P
  is 

real, while the output of 
std

D  with ( )i

M
G   is fake.  

3) Task-induced discriminator: In recent years, the objective of 

various GANs is to generate visually graceful images. In 

medical imaging analysis, the images are from normal subjects 

and abnormal subjects with diseases. Thus, the medical image 

generation needs to consider the abnormal changes, which 

should be included in the generated results if applicable. To 

achieve this, we design a task-induced discriminator for jointly 

learning the image generation and disease classification, so that 

the features of disease classification can be used to improve the 

generation of images with abnormal changes. Fig.2 illustrates 

the network architecture of the task-induced discriminator 

which is a classifier for disease diagnosis. To capture more 

image details, dense blocks are used as the backbone of 

task-induced discriminator. The network contains one 

convolutional layer with a max-pooling layer and 4 dense 

blocks with each one followed by a transition layer, which uses 

pooling to compress the receptive field of features and the 

number of channels. Finally, one fully-connected layer with 

Softmax activation is applied to generate the predicted label. 

The cross-entropy loss is used for task-induced discriminator, 

which is computed as: 

 ( ) ( )( )( )[
MRI

x P xtask

i

taskD i M
L E y log D G 


= −  −   

( ) ( )( )( )1 1 ]
i

taski M
y log D G −  −       (5) 

where 
task

D  denotes the task-induced discriminator, it outputs 

the probability of AD. And iy denotes the label of 
th

i  subject. 

4) Combined loss function: The optimization function of the 

whole network is from the GAN losses, i.e., 
stdDGAN G LL L= +  

and the task-induced discriminator loss DtaskL . In addition, to 

improve the quality of generated images, we introduce two 

pixel-wise losses: the L1 loss and the structural similarity index 

matrix (SSIM) loss. The L1 loss is computed as: 

 
11 P P

ˆL  = −   (6) 

where ( )MP
ˆ G =  and 

1
  is the 

1
L  norm operator. The 

SSIM loss is one of the most perceptual indicators for assessing 

the similarity between two images [30], as defined as: 
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where  M  is the number of local windows of the image, 
P̂ , 

P̂  and 
P ,

P are the mean value and the standard 

deviation of the generated image P̂  and its corresponding 

ground truth P , respectively. ( )
2

1 1 1C k L= and 

( )
2

2 2 2C k L=  are used to avoid the zero denominator, where 

1L , 2L  are the ranges of voxel intensities and 1k , 2k  are 

constants far less than 1. And, 

( )( )
1

1

1P P P P

N

ˆ ˆ

i

i i

P p
ˆ

N
   

    
=

= − −
−

   (9) 

 
 

Fig. 2.  Network architecture of our proposed a task-induced pyramid and attention GAN (TPA-GAN) for imputation of multimodal brain images. 
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In summary, the final optimization loss of our proposed 

TPA-GAN combines the pixel-wise 1L  loss, SSIM loss, GAN 

loss, and task-induced discriminator loss with weights as:   

 ( )1 SSIM DGAN taskL L L L L  = + + +   (10) 

where  ,  and   are weights for three individual losses, 

which are optimized to minimize the combined loss function.  

C. Pathwise Transfer Deep Convolution Network 
(PT-DCN) for Multimodal Disease Classification 

After the missing PET is imputed by TPA-GAN, another 

problem is to learn and combine the features of MRI and PET 

for disease classification. We propose a pathwise transfer deep 

convolution network to gradually learn and combine the 

multi-level and multimodal features of MRI and PET for brain 

disease classification, as shown in Fig. 3. The network contains 

three pathwise transfer blocks and two paths of dense 

convolutional networks with each one learning features from 

single-modality data. 

 

In each path, we use one convolution layer followed by a 

pooling layer, and three dense blocks followed by transition 

layers. The networks of two paths have the same structure for 

parallel single-modality input. In each dense block, every 

convolution layer receives all feature maps from previous 

convolution layers through shortcut connection. The size of 

dense block is set to 3 in each level, which is different from the 

task-induced discriminator. Between two dense blocks, a 

transition layer with one 1×1×1 convolution layer and one 

average pooling layer is set to reduce the dimension and size of 

feature maps. 

The pathwise transfer blocks are proposed to make full use of 

complementary information of different modality images. In 

this work, pathwise transfer block consists of one concatenation 

layer, one 1×1×1 convolution layer, one batch normalization 

layer with ReLU activation, and one 3×3×3 convolution layer. 

The pathwise transfer blocks are used to communicate 

information across these two paths of PET and MRI, which can 

improve the performance of classification model. 

IV. EXPERIMENTS 

In this section, experiments are performed to test the 

proposed deep learning framework on the imputation of 

missing data and the multimodal classification of disease status. 

A. Implementation details 

Our proposed deep learning method was implemented with 

Pytorch framework. All experiments were conducted on 

Ubuntu16.04 and GPU of NVIDIA GeForce GTX1080 Ti. In 

the experiments, we use ADNI-1 dataset to train the networks 

and use ADNI-2 dataset to test the performance of our proposed 

networks. The experiments are conducted for both image 

imputation and classification. To better show the results, the 

subjects used for image imputation and classification are 

slightly different. In the experiments of image imputation by 

TPA-GAN, only the paired real PET and MRI data are used for 

training and testing. In the experiments of disease classification 

by PT-DCN, apart from all real PET and MRI data, the missing 

PET data are imputed for training and testing. To evaluate our 

method, additional experiments with ADNI-2 for training and 

ADNI-1 for testing are provided in Supplementary Materials. 

In the training process of TPA-GAN, we first train the 

pyramid and attention GAN and the task-induced discriminator 

individually. Then, these two pre-trained models are combined 

to fine-tune the whole TPA-GAN to impute the missing PET 

data. In the fine-tuning process, the weights of task-induced 

discriminator are fixed, while its loss is used to update the 

parameters of generator, which can help the generator 

reconstruct the pathological changes. Adam optimizer is 

applied in the training process with the batch size as 2 in both 

networks. For pyramid and attention GAN, the learning rates of 

generator and standard discriminator are set to 0.0001 and 

0.0004, respectively. For task-induced discriminator, the 

learning rate is set to 0.0001. 

After imputing the missing PET images by our TPA-GAN, 

we evaluate the PT-DCN on the classification tasks of AD vs 

CN and pMCI vs sMCI with the complete PET and MRI. Adam 

optimizer is used in the training process with the batch size set 

to 2 and learning rate set to 0.0001.  

B. Effectiveness of image imputation 

To test the effectiveness of image imputation, we perform a 

series of ablation studies of TPA-GAN including the “Basic 

GAN” and its variants with pyramid convolution block, 

self-attention and their combination, denoted as “Pyramid 

GAN”, “Attention GAN” and “PA GAN”, respectively. 

Specifically, the Basic GAN is implemented with the 

adversarial loss and U-net structure for the generator. Pyramid 

GAN is implemented by adding the pyramid convolution layers 

to the Basic GAN. The Attention GAN is implemented by 

adding self-attention module to the last block of generator in 

the Basic GAN. The PA GAN is implemented with the pyramid 

convolution layers and attention module on the generator of 

Basic GAN.  

We compare the effectiveness of image imputation by 

different methods using five measures: structural similarity 

index measure (SSIM), peak signal-to-noise ratio (PSNR), 

mean squared error (MSE), maximum mean discrepancy 

(MMD), and area under the receiver operating characteristic 

(AUC). The average results on all testing subjects (containing 

AD/CN and pMCI/sMCI) from ADNI-2 dataset are provided in 

Table II. For SSIM and PSNR measures, higher values indicate 

better image quality. For MSE and MMD measures, lower 

 
Fig. 3. Architecture of our proposed pathwise transfer dense convolution 
network (PT-DCN) for multimodal classification of AD/MCI. 
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values indicate better image quality. With generated PET 

images, AUC is used to evaluate the classification ability of AD 

vs CN (AUC*) and pMCI vs sMCI (AUC+) by the task-induced 

discriminator. The task-induced discriminator has been 

pre-trained on real PET from ADNI-1 dataset and tested on the 

generated PET from ADNI-2 dataset. We also compare our 

method with the cycle-consistent GAN (Cycle-GAN) [20] in 

Table II. For fair comparison, we implement the 

cycle-consistent GAN method with our best efforts on the same 

training and testing dataset as ours. From the results of SSIM, 

PSNR, MSE and MMD, we can see that the qualities of the 

generated PET images are gradually improved by adding the 

pyramid convolution, attention module and the task-induced 

discriminator to the Basic GAN. The classification results of 

AUC (AUC* and AUC+) are shown in Table II. Benefit that the 

abnormal changes of PET images caused by diseases can be 

better generated by introducing the task-induced discriminator, 

our TPA-GAN achieves better performance than Cycle-GAN. 

Moreover, we visually compare the generated PET images by 

our TPA-GAN to other ablation studies for two typical subjects 

from test dataset, which are shown in Supplementary Materials. 

C. Effectiveness of disease classification 

In this section, we perform the experiments to test the 

proposed PT-DCN method on the multimodal classifications of 

AD vs NC and pMCI vs sMCI. To evaluate proposed method, 

we compute five performance measures: accuracy (ACC), 

sensitivity (SEN), specificity (SPE), F1-score (F1S) and AUC. 

First, we compare the multimodal classification with single- 

modal classification as shown in Table III. In the experiments, 

the classification on MRI or PET images is implemented with 

one path deep dense convolutional network (DCN). We also 

use simple concatenation to combine the MRI and PET features 

for comparison. For fair comparison, we use the same subjects 

of ADNI 2 with the paired real PET and MRI data for testing 

both the single- and multimodal classifications. From Table III, 

we can see that PT-DCN performs better than single modality 

and simple concatenation. The pathwise transfer blocks can 

make full use of complementary information at multiple levels 

of MRI and PET images. The additional training data of 

generated PET can further improve the multimodal 

classification performances, which demonstrates the 

effectiveness of our TPA-GAN (w/ TPA-GAN).   

Second, we have compared our method with other 

multimodal methods that are also based on the baseline visits of 

PET and MRI from ADNI database. Similar to other methods, 

our method is trained on ADNI-1 dataset and tested on ADNI-2 

dataset in the experiment. The missing PET images from 

ADNI-1 and ADNI-2 dataset are imputed by our TPA-GAN. 

Then, all subjects with complete multimodal data are used to 

train and test our PT-DCN. The results are shown in Table IV. 

Specifically, the compared methods include the hierarchical 

ensemble classification method [31], the group-constrained 

sparse learning method [32], the missing data estimation 

method [19], the nonlinear graph fusion network [9], the 

landmark-based deep feature learning model [33] and the latent 

representation learning method [18]. It is not easy to implement 

these methods, because their source codes and pre-trained 

models are not released. For comparison, the results reported in 

their papers are directly used in Table IV. From the results, we 

can see that our proposed method performs better than other 

methods in the tasks of AD diagnosis and MCI prognosis.  

TABLE II 
QUANTITATIVE RESULTS OF ABLATION STUDIES FOR GENERATED PET IMAGES ON ADNI-2 DATASET. PSNR, SSIM, MSE AND MMD ARE USED TO EVALUATE 

THE GENERATION QUALITY OF IMPUTED PET IMAGES (CONSIST OF AD/CN AND PMCI/SMCI), AND AUC IS USED TO EVALUATE THE CLASSIFICATION RESULTS 

OF IMPUTED PET IMAGES BY TASK-INDUCED DISCRIMINATOR FOR AD VS. CN (AUC*) AND PMCI VS. SMCI (AUC+).  

Method SSIM PSNR MSE MMD AUC*(%) AUC+(%) 

Cycle GAN [20] 0.880  0.04 27.2  2.67 388  475 0.249  0.25 68.0 62.7 

Basic GAN 0.868  0.04 26.1  2.39 392  444 0.224  0.24 61.4 55.6 

Pyramid GAN 0.899  0.04 27.3  2.65 360  440 0.221  0.24 71.8 59.7 

Attention GAN 0.900  0.03 27.6  1.47 209  348 0.117  0.15 76.1 61.4 

PA GAN 0.913  0.03 28.5  1.74 204  347 0.129  0.14 81.0 64.0 

TPA-GAN 0.915  0.04 29.0  2.99 184  346 0.107  0.14 88.3 72.4 

 

TABLE III 
COMPARISION OF CLASSIFICATION REULTS BY USING THE SINGLE- AND MULTIMODAL FOR AD VS. CN AND PMCI VS. SMCI, WITH THEIR MODELS TRAINED ON 

ADNI-1 AND TESTED ON ADNI-2. THE TEST SET CONTAINS ONLY THE PAIRED REAL PET AND MRI DATA, WHILE THE TRAINING SET INCLUDES THE PAIRED REAL 

PET AND MRI DATA (“W/O TPA-GAN”) OR REAL PET AND MRI DATA AS WELL AS THE IMPUTED PET BY TPA-GAN (“W/ TPA-GAN”). 

Modality Method 
AD vs. CN (%) pMCI vs. sMCI (%) 

ACC SEN SPE AUC F1S ACC SEN SPE AUC F1S 

MRI Single DCN 85.4 80.1 89.5 90.2 83.3 63.9 63.1 64.5 66.6 59.0 

PET Single DCN  88.8 86.1 90.8 94.3 87.0 67.7 69.2 66.7 73.7 63.8 

MRI+PET 

Simple Concatenation 89.1 86.1 91.4 94.8 87.3 64.6 63.1 65.6 71.3 59.4 

Our PT DCN (w/o TPA-GAN) 90.3 88.9 91.4 95.5 88.9 74.7 72.3 76.3 77.5 70.1 

Our PT DCN (w/ TPA-GAN) 92.7 91.7 93.5 96.4 91.7 75.3 70.8 78.4 77.8 70.2 
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V. DISCUSSION 

For multimodal classification of incomplete brain imaging 

data, we first construct a TPA-GAN network for imputation of 

the missing modality. The pyramid convolution layers and 

attention module as well as the task-induced discriminator are 

integrated into TPA-GAN to generate the missing PET with its 

corresponding MRI. Specifically, the pyramid convolution 

layers can capture multi-level features of MRI, while the 

attention module can effectively eliminate the redundant 

information and accelerate the convergence of network. The 

task-induced discriminator can help generate the 

disease-specific image details. Results and comparisons in 

Table II have demonstrated improvements of these 

contributions. TPA-GAN can not only generate the image 

details of PET, but also preserve the important information to 

the task of disease classification.  

With the complete multimodal brain images, PT-DCN is 

built with pathwise transfer blocks to gradually learn and 

combine multimodal features for final disease classification. 

The pathwise transfer blocks can make full use of 

complementary information at multiple levels between MRI 

and PET images. Through the data augmentation of TPA-GAN, 

our proposed method can further improve the performance of 

multimodal AD/MCI diagnosis. Compared to the existing 

multimodal classification methods, our proposed method has 

achieved promising performance.  

However, there are still some limitations in the proposed 

method which can be improved in the future. First, in addition 

to MRI and PET data, other brain imaging data such as DTI can 

be included to further improve the performance of disease 

diagnosis. Second, the models are trained on ADNI-1 and 

tested on ADNI-2 independently, without considering the 

differences between these databases. In fact, most of MRI in 

ADNI-1 are captured by 1.5T scanners while the MRI in 

ADNI-2 are captured by 3T scanners, which may affect the 

performance of our proposed method. In the future, data 

adaptation or transferring techniques can be investigated to 

alleviate the problem. 

VI. CONCLUSION 

In this paper, we have proposed two deep learning 

frameworks: 1) task-induced pyramid and attention GAN 

(TPA-GAN), and 2) pathwise transfer dense convolutional 

network (PT-DCN). The TPA-GAN combines the pyramid 

convolution and attention module with a task-induced 

discriminator to improve the image imputation. With complete 

PET and MRI, PT-DCN gradually combines the multi-level 

and complementary multimodal features for disease 

classification. Experimental results on ADNI database have 

demonstrated the effectiveness of our proposed method. 
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